A New Method for Speeding Up Arithmetic on Elliptic Curves over Binary Fields

نویسندگان

  • Kwang Ho Kim
  • So In Kim
چکیده

Now, It is believed that the best costs of a point doubling and addition on elliptic curves over binary fields are S M 5 4 + (namely, four finite field multiplications and five field squarings) and , respectively. In this paper we reduce the costs to less than S M 5 8 + S M 3 3 + and , respectively, by using a new projective coordinates we call PL-coordinates and rewriting the point doubling formula. Combining some programming skills, the method can speed up a elliptic curve scalar multiplication by about 15~20 percent in practice. S M 1 8 +

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding up elliptic curve discrete logarithm computations with point halving

Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iter...

متن کامل

On Efficient Pairings on Elliptic Curves over Extension Fields

In implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairingfriendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on...

متن کامل

Speeding up Elliptic Curve Scalar Multiplication without Precomputation

This paper presents a series of Montgomery scalar multiplication algorithms on general short Weierstrass curves over odd characteristic fields, which need only 12 field multiplications plus 12 ∼ 20 field additions per scalar bit using 8 ∼ 10 field registers, thus significantly outperform the binary NAF method on average. Over binary fields, the Montgomery scalar multiplication algorithm which w...

متن کامل

Fast Scalar Multiplication for Elliptic Curves over Binary Fields by Efficiently Computable Formulas

This paper considers efficient scalar multiplication of elliptic curves over binary fields with a twofold purpose. Firstly, we derive the most efficient 3P formula in λ-projective coordinates and 5P formula in both affine and λ-projective coordinates. Secondly, extensive experiments have been conducted to test various multi-base scalar multiplication methods (e.g., greedy, ternary/binary, multi...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007